Affine Anosov Diffeomorphims of Affine Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Anosov Diffeomorphims of Affine Manifolds

̂ M of the connection ∇M to the universal cover ̂ M of M is a locally flat connection. The affine structure of ̂ M is defined by a local diffeomorphism DM : ̂ M → R called the developing map. The developing map gives rise to a representation hM : π1 M → Aff R called the holonomy. The linear part L hM of hM is the linear holonomy. The affine manifold M,∇M is complete if and only if DM is a diffeomor...

متن کامل

Two Examples of Affine Manifolds

An affine manifold is a manifold with a distinguished system of affine coordinates, namely, an open covering by charts which map homeomorphically onto open sets in an affine space E such that on overlapping charts the homeomorphisms differ by an affine automorphism of E. Some, but certainly not all, affine manifolds arise as quotients Ω/Γ of a domain in E by a discrete group Γ of affine transfo...

متن کامل

Flat Bundles on Affine Manifolds

We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine m...

متن کامل

Complete affine manifolds: a survey

An affinely flat manifold (or just affine manifold) is a manifold with a distinguished coordinate atlas with locally affine coordinate changes. Equivalently M is a manifold equipped with an affine connection with vanishing curvature and torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a discrete group of affine transformations acting properly on E. This is equivalent ...

متن کامل

Convexity on Affine Grassmann Manifolds

Since the parametrizing space for k-flats in R is the “affine Grassmannian”, G ′ k,d, whose points represent k-flats and whose topology is inherited from that of R in the natural way (a neighborhood of the k-flat spanned by points x0, . . . , xk in general position consisting of all k-flats spanned by points y0, . . . , yk with yi in a neighborhood of xi for each i), what we are asking is wheth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2008

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2008/673534